

32 Brasser Avenue Dromana Victoria 3936 Australia T +61 3 5987 2242 F +61 3 5987 3303 E info@vintessential.com.au W www.vintessential.com.au

ABN: 60 068 057 045

ENZYMATIC TEST KIT FOR THE DETERMINATION OF CITRIC ACID IN GRAPE JUICE AND WINE

PRODUCT

Product no. 4A126, for 30 tests, for in vitro use only

PRINCIPLE OF MEASUREMENT

Citric acid may be used at the final stages of winemaking to make minor adjustments to acid levels without affecting the bi-tartrate stability of the wine. It is determined enzymatically according to the following equations:

CL

Citrate → oxaloacetate + acetate

In the presence of enzymes MDH and LDH, both the oxaloacetate and its decarboxylation product pyruvate, are reduced by NADH to malate and lactate respectively.

MDH/LDH

Oxaloacetate + pyruvate + NADH + H⁺ → malate + lactate + NAD⁺

The amount of NADH oxidised is measured at 340 nm and is stoichiometrically related to the amount of citrate present.

CONTENTS

The kit includes the following reagents:

Reagent No.	Reagent	Preparation	Quantity	Stability
1	Buffer	Nil	33 mL	1 year at 4°C
2	NADH	Add 1.7 mL of distilled water to either bottle as required, mix to dissolve	2 x 1.7 mL	1 year at 4°C (1 month at 4°C once diluted)
3	MDH/LDH	Mix gently by inversion before use	0.7 mL	1 year at 4°C
4	CL	Add 0.35mL of distilled water to either bottle as required, mix to dissolve	2 x 0.35mL	1 year at 4°C (2 months at 4°C once diluted)
5	Standard	Nil	3.3 mL	1 year at 4°C

The shelf life of Reagent 1 can be extended by placing aliquots in a freezer.

Do not freeze reagents 2, 3 or 4.

Failure to store reagents at the recommended temperature will reduce their shelf life.

For concentration of Standard, refer to label on bottle.

SAFETY

- Wear safety glasses
- Do not ingest Buffer or Standard as they contain sodium azide as a stabilizer

PROCEDURE

Operating Parameters

Wavelength 340 nm

Cuvettes 1cm, quartz, silica, methacrylate or polystyrene

Temperature $20 - 25^{\circ}$ C Final volume in cuvette 3.14 mL

Zero against air without cuvette in light path

Issued 18/11/2020 4A126 Page 1 of 2

SAMPLE PREPARATION

Samples should be diluted to ensure concentration in the assay solution is no more than 0.5 g/L. For most samples, a 1 in 2 dilution with distilled water should be sufficient.

For samples containing between 1 g/L to 2.5 g/L of citric acid, a 1 in 5 dilution would be appropriate. Ideally, A₁ should lie between 0.90 – 1.20 absorbance units.

Red wines or highly coloured undiluted juice samples require decolourisation. To decolourise, add approximately 0.1 g of PVPP to 5 mL of sample in a test tube. Shake well for about 1 minute. Clarification is achieved by settling or filtering through Whatman No. 1 filter paper.

SAMPLE ANALYSIS

a. Pipette the following volumes of reagents into the cuvettes:

Reagent	Blank	Standard	Sample
1. Buffer	1.00 mL (1000 μL)	1.00 mL (1000 µL)	1.00 mL (1000 µL)
2. NADH	0.10 mL (100 µL)	0.10 mL (100 μL)	0.10 mL (100 µL)
Distilled water	2.00 mL (2000 µL)	1.80 mL (1800 µL)	1.80 mL (1800 µL)
Sample/Standard		0.20 mL (200 µL)	0.20 mL (200 µL)
3. MDH/LDH	0.02 mL (20 μL)	0.02 mL (20 μL)	0.02 mL (20 μL)

- b. Mix well by gentle inversion and read absorbances, A₁, after 5 minutes.
- c. Pipette the following reagent into the cuvettes:

4. CL	0.02 mL (20µL)	0.02 mL (20µL)	0.02 mL (20µL)

d. Mix well by gentle inversion and read absorbances, A2, after 25 minutes.

CALCULATIONS*

1. Calculate the Net Absorbance for the Blank, Sample and Standard:

Net Absorbance, $A_N = A_1 - A_2$

2. Calculate the Corrected Absorbance by subtracting the Net Absorbance for the Blank from the Net Absorbance for the Sample.

Sample Corrected Absorbance, A_C = Sample A_N – Blank A_N

- 3. Do the same for the Standard by substituting the Standard absorbance values in place of the Sample absorbance values.
- 4. Calculate the Citric acid concentration as follows;

Citric acid (g/L) = $A_C \times 0.4787 \times Dilution Factor$

http://www.vintessential.com.au/certification/calculation-worksheets/

REFERENCES

1. OIV, 2018, Compendium of international methods of wine and must analysis. *International Organisation of Vine and Wine*, Vol 1: Paris, France, pp. OIV-MA-AS313-09.

© Copyright 2018, Vintessential Laboratories. All rights reserved. No part of this publication may be copied or reproduced by any means without the written permission of Vintessential Laboratories.

Issued 18/11/2020 4A126 Page 2 of 2

^{*}A calculation spreadsheet is available for download at: