

32 Brasser Avenue
Dromana Victoria 3936
Australia
T +61 3 5987 2242
F +61 3 5987 3303
E info@vintessential.com.au
W www.vintessential.com.au

ABN: 60 068 057 045

KIT DE ANÁLISIS ENZIMÁTICO PARA LA DETERMINACIÓN DE ÁCIDO L-MÁLICO EN JUGO DE UVA Y EN VINO

PRODUCTO

Producto número 4A160, permite 30 análisis, sólo para el uso in vitro.

PRINCIPIO

El ácido L-málico se encuentra en jugo de uva y en vino, y se determina enzimáticamente de acuerdo a las siguientes ecuaciones:

MDH

L-malato + NAD $^+$ \leftrightarrow Oxaloacetato + NADH + H $^+$

El ácido L-málico se oxida por la nicotinamida-adenina dinucleotido (NAD) en oxaloacetato, usando la enzima L-malato-deshidrogenasa (MDH) como catalizador. El equilibrio no favorece la formación de Oxaloacetato, y por consiguiente, el oxaloacetato se elimina por una enzima atrapadora. La cantidad de NADH que se forma se mide a 340 nm y se relaciona estequiométricamente con la cantidad de L-malato que se consume. En este método, el glutamato oxaloacetato transaminasa (GOT) se usa como la enzima atrapadora. En la presencia de L-glutamato, el oxaloacetato se convierte irreversiblemente en L-aspartato.

GOT

Oxaloacetato + L-glutamato

L-aspartato + A-ketoglutarato

CONTENIDO

El kit contiene los siguientes reactivos:

Reactivo No.	Reactivo	Preparación	Cantidad	Estabilidad
1	Buffer	Ninguna	33 mL	2 años a 4°C
2	NAD	Agregar 6,6 mL de agua destilada, mezclar para disolver	6,6 mL	2 años a 4°C (Diluido: 1 años a 4°C, 2 años a -20°C)
3	GOT	Mezclar con suavidad por inversión ante de usar	0,4 mL	2 años a 4°C
4	MDH	Ninguna	0,4 mL	2 años a 4°C
5	Estándar	Ninguna	3,3 mL	2 años a 4°C

La vida útil de los reactivos 1 & 2 se puede extender si se ponen alícuotas en el congelador.

No congelar los reactivos de enzima 3 & 4.

La falta de mantener los reactivos a la temperatura recomendada reduce su vida útil.

Para la concentración del Estándar, refiérase a la etiqueta de la botella.

PROCEDIMIENOS DE SEGURIDAD

- Usar gafas de seguridad
- Reactivo 1 es ligeramente corrosivo
- No ingerir el Buffer o el Estándar porque contienen azida de sodio que actúa como estabilizador

PROCEDIMIENTO

Abertura Común

Longitud de Onda 340 n

Cubetas 1cm, cuarzo, silicio, metacrilato o poliestireno

Temperatura 20 – 25°C Volumen final en cubeta 2,22 mL

Cero contra aire sin cubeta en el paso de luz

Número 24/09/2014 4A160 Página 1 de 2

32 Brasser Avenue Dromana Victoria 3936 Australia T +61 3 5987 2242 F +61 3 5987 3303 E info@vintessential.com.au W www.vintessential.com.au

ABN: 60 068 057 045

PREPARACIÓN DE LA MUESTRA

Las muestras deben diluirse con agua destilada para asegurar que la concentración en la solución de ensayo no sea más de 0,4 g/L. Para muestras con menos de 2 g/L, una dilución de 1 en 5 es suficiente. Como guía general, las mediciones de absorbancia no deben superar una unidad de absorbancia.

Los vinos tintos sin diluir o muestras de jugo muy coloreadas necesitan decoloración. Para decolorear, agregar aproximadamente 0,1 g de PVPP a 5 mL de muestra en un tubo de ensayo. Agitar bien por un minuto. La clarificación se consigue si se deja reposar o se filtra en papel de filtro Whatman No. 1.

ANÁLISIS DE LA MUESTRA

a. Pipetear los siguientes volúmenes de reactivos en las cubetas:

Reactivo	Muestra sin tratar	Estándar	Muestra
1. Buffer	1,00 mL (1000 µL)	1,00 mL (1000 µL)	1,00 mL (1000 µL)
2. NAD	0,20 mL (200 µL)	0,20 mL (200 µL)	0,20 mL (200 µL)
Agua Destilada	1,00 mL (1000 µL)	0,90 mL (900 µL)	0,90 mL (900 µL)
3. GOT	0,01 mL (10 µL)	0,01 mL (10 µL)	0,01 mL (10 µL)
Muestra / Estándar	,	0,10 mL (100 µL)	0,10 mL (100 μL)

- b. Mezclar bien por suave inversión y leer las absorbancias, A₁, después de 3 minutos.
- c. Pipetear el siguiente reactivo en las cubetas:

4. MDH	0,01 mL (10µL)	0,01 mL (10µL)	0,01 mL (10µL)

d. Mezclar bien por suave inversión y leer las absorbancias, A2, después de 10 minutos.

CALCULOS*

1. Calcular la Absorbancia Neta de la Muestra sin tratar, la Muestra y el Estándar:

Absorbancia Neta, $A_N = A_2 - A_1$

2. Calcular la Absorbancia Corregida, restando la Absorbancia Neta de la Muestra sin tratar de la Absorbancia Neta de la Muestra.

Muestra de Absorbancia Corregida, A_C = Muestra A_N – Muestra sin tratar A_N

- 3. Hacer lo mismo para el Estándar, sustituyendo las absorbancias del Estándar en el lugar de las absorbancias de la Muestra.
- 4. Calcular la concentración de ácido L-málico como sigue:

Concentración de ácido málico (g/L) = A_C x 0,4725 x Factor de Dilución

5. Precisión (donde x es la concentración de ácido málico en la muestra en g/l):

Repetibilidad r = 0.03 + 0.034 x Reproducibilidad R = 0.05 + 0.071 x

REFERENCIAS

1. "Compendium of International Methods of Wine and Must Analysis" OIV, Vol 1, 2006, MA-E-AS313-11-ALMENZ, p.3.

© Derechos de autor 2014, **Vintessential Laboratories**. Reservados todos los derechos. Ninguna parte de esta publicación, protegida por los derechos de autor, puede ser reproducida o copiada en ninguna forma sin el permiso previo de Vintessential Laboratories.

Número 24/09/2014 4A160 Página 2 de 2

^{*} Una hoja de cálculo está disponible para descargar en: www.vintessential.com.au/certification/calculation-worksheets/